# Insights from Statistical Physics into Computational Complexity

Bart Selman

**Cornell University** 

Joint with Scott Kirkpatrick (IBM Research)

# Computational Challenges

Many core computational tasks have been shown to be computationally intractable.

#### We have results in:

- -reasoning
- -planning
- -learning

# A Few Examples

#### Reasoning

- -many forms of deduction
- -abduction / diagnosis (e.g. de Kleer 1989)
- -default reasoning (e.g. Kautz and Selman 1989)
- Bayesian inference (e.g. Dagum and Luby 1993)

#### **Planning**

-domain-dependent and independent (STRIPS)

(e.g. Chapman 1987; Gupta and Nau 1991; Bylander 1994)

## Learning

-neural net "loading" problem (e.g. Blum and Rivest 1989)

# Complexity Results, Cont.

- An abundance of negative complexity results.
- Results often apply to very restricted formalisms, and also to finding approximate solutions.

# What Is The Impact Of These Results?

- Results are based on a worst-case analysis and there continues to be a debate on their practical relevance.
- On the one hand, there are successful systems that do not appear to be hampered by the negative complexity results.

Examples: Bayesian net applications,

Neural nets,

CLASSIC KR system (Brachman et al. 1989)

 On the other hand, in other domains, negative complexity properties are a clear obstacle in scaling-up the systems.

Examples: ATMS diagnosis: 25+ components

planning systems: 20+ objects and operators

(Real domains: 1,000+ elements.)

Contradictory experiences lead to the question:

When and where do computationally hard instances show up?

# Recent Developments

- A --- A better understanding of the nature of computationally hard problems.
- B --- New stochastic methods for solving such problems.

## **Overview**

## PART A. Computationally Hard Instances

worst-case vs. average-case critically-constrained problems phase transitions

#### **PART B. Stochastic Methods**

heuristic repair, GSAT, and simulated annealing comparison with systematic methods asymmetry consistency / inconsistency

## **Summary**

# PART A. Computationally Hard Instances

- · I'll use the propositional satisfiability problem (SAT) to illustrate ideas and concepts throughout this talk.
- SAT: prototypical hard combinatorial search and reasoning problem.

Several of these concepts have also been studied in the context of **Constraint Satisfaction Problems**. In particular, see the work by Cheeseman and colleagues (1991).

# Satisfiability

- SAT: Given a formula in propositional calculus, is there an assignment to its variables making it true?
- · We consider clausal form, e.g.:

$$(a \lor \neg b \lor c) \land (b \neg d \lor (b \land c \lor e) \lor ... \land$$

- Problem is NP-Complete. (Cook 1971)
- Shows surprising "power" of SAT for encoding computational problems.
- · 2,000+ NP-complete problems identified so far.



exponential

polynomial

# **SAT: Worst-Case Complexity**



#### CORNELL

#### SAT is an NP-complete problem

- □ Worst-case believed to be exponential (roughly 2<sup>N</sup> for N variables)
- □ 10,000+ problems in CS are NP-complete -- equally hard and "reducible" to one-another (e.g. planning, scheduling, protein folding, reasoning, traveling salesperson, ...)
- □ P vs. NP --- \$1M Clay Prize



## Computational Complexity Hierarchy







Note: widely believed hierarchy; know P≠EXP for sure



# Some Example Applications Of SAT

- constraint satisfaction
  - -scheduling and planning
  - -VLSI design and testing (Larrabee 1992)
- direct connection to deductive reasoning

S ha iff S { m} is not satisfiable

- part of many reasoning tasks
  - diagnosis / abduction
  - default reasoning
- Learning / Protein folding / Finding proofs

# How well can SAT be solved in practice?

# Average-Case Analysis

 Goldberg (1979) reported very good performance of Davis-Putnam (DP) procedure on random instances.

But distribution favored easy instances. (Franco and Paull 1983)

- Problem: Many randomly generated SAT problems are surprisingly easy.
- Goldberg used variable-clause-length model:

For each clause, pick each literal with probability p.

#### Variable Clause Size Model



Polynominal average time in regions:

- la D Purdom 1987 backtracking
- Ib Đ Iwama 1989 counting alg.
- Ic D Brown and Purdom 1985 pure literal rule
- II Đ Franco 1991
- III Đ Franco 1994

Open: region IV

# But the problem is NP-complete ... where are the hard instances?

# Generating Hard Random Formulas

· Key: Use fixed-clause-length model.

(Mitchell, Selman, and Levesque 1992)

- Critical parameter: ratio of the number of clauses to the number of variables.
- Hardest 3SAT problems at ratio = 4.3

#### **Hardness of 3SAT**



# Intuition

- At low ratios:
  - -few clauses (constraints)
  - -many assignments
  - -easily found
- At high ratios:
  - -many clauses
  - -inconsistencies easily detected

#### The 4.3 Point



### 200 Variable 3SAT 100 0000000000000000 Percent Satisfia Percent Satisfiable/Run Time 80 Notice how sharp transition gets! 60 The region of 40 interest 20 0 8 10 6 Ratio of Clauses to Variables

## Theoretical Status Of Threshold

- Very challenging problem ...
- Current status:

3SAT threshold lies between 3.003 and 4.8

(Chayet et al. 1999; Friedgut 1997;

Motwani et al. 1994; Broder and Suen 1993;

Broder et al. 1992; Dubois 1990)

## A Closer Look At The 3SAT Phase Transition



Transition sharpens up for higher values of N

## Phase Transition Phenomenon

 Can be analyzed using finite-size scaling techniques.

(Kirkpatrick and Selman, Science 1994)

#### Finite-Size Scaling For 3SAT



#### Finite-Size Scaling For 4SAT



# Summary Phase Transition Effect

- Coincides with hardest instances.
- Behavior at threshold can be analyzed with tools from statistical physics:
  - Threshold has universal form with predictable corrections for N (number of vars).
  - -Inverse transformation gives 50% point for testing.

(Also, rescaling cost function; Selman and Kirkpatrick 1995, Gent and Walsh 1995)

- · Similar phenomenon for graph coloring.
  - random graphs
  - 3-coloring; threshold around 4.6 (connectivity)
     (Cheeseman et al. 1991)
- · Critically-constrained --- Practical relevance
  - -Airline fleet scheduling (Nemhauser 1994)
  - -VLSI design (Agrawal 1991)
  - -Traveling Salesperson Problem (Gent and Walsh 1995)

See also Hogg, Huberman, and Williams 1996; Crawford and Auton 1993; Frost and Dechter 1994; Larrabee and Tsuji 1993; Schrag and Crawford 1996; Smith and Grant 1994; Smith and Dyer 1996; and more!

## PART B. Fast Stochastic Methods

- After having identified hard instances, can we find better algorithms for solving them?
- · Answer: Yes (at least for half of them...)

# Standard Procedures For SAT

- Systematic search for a satisfying assignment.
- Interesting situation:
  - –Davis-Putnam (DP) procedure, proposed in 1960, is still the fastest complete method!
  - -Backtrack-style procedure with unit propagation.
    - SAT Competition 1992; DIMACS Challenge 1993 / 1994

 DP provides very challenging benchmark for comparisons with other systematic (complete) procedures.

#### Not just on random formulas!

- Many other methods have been tried, e.g.,
  - 1) Backtracking with sophisticated heuristics

(Purdom 1984; Zabih and McAllester 1988; Andre and Dubois 1993; Bhom 1992; Crawford and Auton 1993; Freeman 1993, etc.)

2) Translations to integer programming

(Jeroslow 1986; Hooker 1988; Karmarkar et al. 1992; Gu 1993)

3) Exploiting hidden structure

(Stamm 1992; Larrabee 1991; Gallo and Urbani 1989; Boros et al. 1993)

- 4) Limited resolution at the backtrack nodes (Billionet and Sutter 1992; van Gelder and Tsuji 1993)
- · And others!

Open Question: Why don't they beat DP?

· Let's try something completely different ...

# Randomized Greedy Local Search: GSAT

Begin with a random truth assignment.

Flip the value assigned to the variable that yields greatest number of satisfied clauses.

Repeat until a model is found, or have performed specified maximum number of flips.

If model is still not found, repeat entire process, starting from different random assignment.

(Selman, Levesque, and Mitchell 1992)

## How Well Does It Work?

- First intuition: Will get stuck in local minimum, with a few unsatisfied clauses.
- No use for almost satisfying assignments.
  - E.g., a plan with a "magic" step is useless.
  - Contrast with optimization problems.
- Surprise: It often finds global minimum!
   I.e., finds satisfying assignments.
- Inspired by local search for CSP initially used on N-Queens: Heuristic Repair Method. (Minton et al. 1991)

#### GSAT outperforms Davis-Putnam on, e.g.:

- Hard random formulas
  - -DP: up to 400 vars; GSAT: 2000+ var formulas.
- Boolean encodings of graph coloring problems.
  - -GSAT competitive with direct encodings.
- Encodings of Boolean circuit synthesis and diagnosis problems.

#### **GSATÕs Search Space**



# Improvements Of Basic Local Search

Issue: How to move more quickly to successively lower plateaus?

Idea: Introduce **uphill** moves ("noise") to escape from long plateaus (or true local minima).

#### Noise strategies:

a) Simulated Annealing (Kirkpatrick et al. 1982)

b) Biased Random Walk

(Selman, Kautz, and Cohen 1993)

# Simulated Annealing

- Noise model based on statistical mechanics.
- Pick a random variable

```
d = change in number of unsatisfied clauses
```

```
If d < 0 make flip ("downward")
```

else flip with probability  $\vec{e}^{I/T}$  ("upward").

Slowly decrease T from high temperature to near zero.

## Random Walk

- Random walk SAT algorithm:
  - 1) Pick random truth assignment.
  - 2) Repeat until all clauses are satisfied:

    Flip random variable from unsatisfied clause.
- Solves 2SAT in  $O(n^2)$  flips. (Papadimitriou 1992)
- Does not work for hard k-SAT (k >= 3).

### Biased Random Walk

- 1) With probability p, "walk", i.e., flip variable in some unsatisfied clause.
- 2) With probability 1-p, "greedy move", i.e., flip variable that yields greatest number of satisfied clauses.

## Experimental Results: Hard Random 3SAT

|      | GSAT  |      |      |      | Sim. Ann. |      |
|------|-------|------|------|------|-----------|------|
|      | basic |      | walk |      |           |      |
| vars | time  | eff. | time | eff. | time      | eff. |
| 100  | .4    | .12  | .2   | 1.0  | .6        | .88  |
| 200  | 22    | .01  | 4    | .97  | 21        | .86  |
| 400  | 122   | .02  | 7    | .95  | 75        | .93  |
| 600  | 1471  | .01  | 35   | 1.0  | 427       | .3   |
| 800  | *     | *    | 286  | .95  | *         | *    |
| 1000 | *     | *    | 1095 | .85  | *         | *    |
| 2000 | *     | *    | 3255 | .95  | *         | *    |

Biased Walk better than Sim. Ann. better than Basic GSAT better than DP.

## Other Applications Of GSAT

- VLSI circuit diagnosis
   SAT formulation by Larrabee (1992)
   approx. 10,000 var 5,000 clause problems
- Planning and scheduling

   approx. 20,000 var 100,000 clause problems
   (Crawford and Baker 1994)
- Finite algebra
   search for algebraic structures

GSAT+walk outperforms systematic method on large instances. Currently exploring remaining open problems. (Fujita et al. 1993)

#### For other work on stochastic, incomplete methods, see e.g.:

Adorf and Johnston 1990; Beringer et al. 1994; Davenport et al. 1994 (GENET); Kask and Dechter 1995; Ginsberg and McAllester 1994; Gu 1992; Hampson and Kibler 1993; Konolige 1994; Langley 1992; Minton et al. 1991; Morris 1993; Pinkas and Dechter 1993; Resende and Feo 1993; Spears 1995, and others!

- GSAT-style procedures are now a promising alternative to systematic methods.
- · Drawback: cannot show unsatisfiability.

## Showing UNSAT / Inconsistencies

Given the success of stochastic search methods on satisfiable instances, a natural question is:

Can we do something similar for unsatisfiable instances?

To show a set of clauses S unsatisfiable, we need to demonstrate ("prove") that none of the 2<sup>N</sup> truth assignments satisfies S.

This "truth-table" method is very time consuming.

Compare this with having to check a single satisfying assignment to verify the satisfiability of a formula.

Can we do better? --- Surprisingly difficult!

## Length Of Proofs

- Best know improvement on truth tables: resolution
  - -Resolve clauses until empty clause is reached.
  - -Widely used in automated theorem proving.
- DP is a form of resolution.

### Limitations Of Resolution

- Method can't "count"! Pigeon-hole formulas:
   Can't place N+1 objects in N holes.
   Shortest resolution proof is exponentially long.
   (Cook / Karp 1972; Haken 1985)
- · Random unsat formulas: exponential size proofs.

Explains why we can't push DP over 400 vars:

400 vars requires search tree of about 10 million nodes

1000 vars unsat requires 10^15 nodes! (Chvatal and Szemeredi 1988; Crawford 1995)

## Stochastic Search For Proofs

- **GSAT:** start with random truth assignment (size linear in N), and try to "fix" it.
- Proposal for UNSAT: start with random proof structure, and try to fix it.
- · Completely unfeasible if the structure that we're fixing has trillions of nodes (exponential in N).
- We need short proofs! (O(N) or something...)
   (Using abstractions / symmetrries?)

# Recap Of Results

#### A) Computationally hard problem instances

- Hardest ones are critically-constrained.
- Under- and over-constrained ones can be surprisingly easy.
- Critically-constrained instances at phasetransition boundaries.

Properties of transition can be analyzed with tools from statistical physics.

#### **B) Stochastic Search Methods**

GSAT: Randomized local search for SAT testing.
 Viable alternative to systematic, complete methods.

#### Progress:

- -1991: 10 vars, 500 clause theories.
- -1995: 2,000 to 20,000 vars, up to 500,000 clauses
- Approaches size of practical applications.
  - E.g. in scheduling, planning, diagnosis, circuit design, and constraint-logic programming.

See proceedings for many additional pointers.

## Impact And Future Directions

#### **Fast Incomplete Methods**

- -Shift in Reasoning and Search from Systematic / Complete methods to Stochastic / Incomplete methods.
- -Key issue: Better scaling properties.
- –Analogy in OR: Shift from finding optimal to finding approximate solns.
- –Also, little progress on heuristic guidance of complete methods. DP still rules…

# Impact, Cont.

#### Message for KR&R

-Asymmetry between our ability to show satisfiability vs. unsatisfiability, argues for model-finding (show sat) over theorem proving (show unsat).

#### -Examples:

- Vivid repr. (Levesque 1985)
- Planning (Kautz and Selman 1992)
- Abduction / diagnosis / deduction
  - Model-based repr. versus formula-based repr.
     (Kautz, Kearns, and Selman 1994; Khardon and Roth 1994)
  - -Case-based reasoning (Kolodner 1991)

# Some Challenges

Fast incomplete strategies for UNSAT (deduction)?

Need for short proofs. Human proofs O(N)? Need automatic discovery of abstractions, symmetries, useful lemmas...

Need for more model-based reformulations:

Where solutions are **compact structures** --- allowing for randomized local search strategies.

• Can we syntactically characterize the class of instances solved by incomplete, stochastic methods? Running algorithm may be the best and only characterization!

# Possible Limits Of Syntactic Characterization



Would suggest fundamental role for incomplete methods.