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Computational Challenges 

  Many core computational tasks have 
been shown to be computationally 
intractable. 
 

  We have results in: 
- reasoning 

- planning 

- learning 
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A Few Examples 
Reasoning 
- many forms of deduction 
- abduction / diagnosis     (e.g. de Kleer 1989) 

- default reasoning           (e.g. Kautz and Selman 1989) 
- Bayesian inference        (e.g. Dagum and Luby 1993) 

Planning 
- domain-dependent and independent (STRIPS) 

        (e.g. Chapman 1987; Gupta and Nau 1991; Bylander 1994) 

Learning 
- neural net “loading” problem  (e.g. Blum and Rivest 1989) 
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Complexity Results, Cont. 

·  An abundance of negative complexity results. 

· Results often apply to very restricted   
formalisms, and also to finding approximate 
solutions. 



BS - 08/95  5 

What Is The Impact Of These Results? 
· Results are based on a worst-case analysis and  

there continues to be a debate on their practical 
relevance. 

· On the one hand, there are successful systems  
that do not appear to be hampered by the negative 
complexity results. 

   Examples:  Bayesian net applications, 
       Neural nets, 
       CLASSIC KR system (Brachman et al. 1989) 
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· On the other hand, in other domains, negative 
complexity properties are a clear obstacle in 
scaling-up the systems. 

 Examples:  ATMS diagnosis: 25+ components 
    planning systems: 20+ objects and operators 

                (Real domains: 1,000+ elements.) 

· Contradictory experiences lead to the question: 

When and where do computationally 
hard instances show up? 
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Recent Developments 

A  ---   A better understanding of the nature of 
        computationally hard problems. 

B  ---  New stochastic methods for solving such 
        problems. 
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Overview 
PART A. Computationally Hard Instances 

worst-case vs. average-case 
critically-constrained problems 
phase transitions 

PART B. Stochastic Methods 
heuristic repair, GSAT, and simulated annealing 
comparison with systematic methods 
asymmetry consistency / inconsistency 

Summary 
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PART A. Computationally Hard Instances 

·  I’ll use the propositional satisfiability problem (SAT) 
to illustrate ideas and concepts throughout this talk. 

·  SAT: prototypical hard combinatorial search and reasoning 
problem. 

   Several of these concepts have also been studied in the context of 
Constraint Satisfaction Problems. In particular, see the work by 
Cheeseman and colleagues (1991). 
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Satisfiability 
·  SAT: Given a formula in propositional calculus, is 

there an assignment to its variables making it true? 

· We consider clausal form, e.g.: 

(a       b    c)     (   b    d      (b    c    e)     . . .

·  Problem is NP-Complete. (Cook 1971) 

·  Shows surprising “power” of SAT for encoding 
computational problems.  

·  2,000+ NP-complete problems identified so far. 

 

)
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SAT: Worst-Case Complexity 

SAT is an NP-complete problem 
 

o Worst-case believed to be 
exponential (roughly 2N for N 
variables) 

o 10,000+ problems in CS are 
NP-complete -- equally hard and 
“reducible” to one-another (e.g. 
planning, scheduling, protein folding, 
reasoning, traveling salesperson, …) 

o P vs. NP --- $1M Clay Prize 
exponential 
polynomial 
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P 

NP 

P^#P 

PSPACE 

NP-complete: 
   SAT, propositional 
   reasoning, scheduling, 
   graph coloring, puzzles, … 

PSPACE-complete: 
   QBF, planning, chess 
(bounded), … 

EXP-complete: 
   games like Go, … 

P-complete: 
   circuit-value, … 

Note: widely believed hierarchy; know P≠EXP for sure 

In P: 
   sorting, shortest path, … 

Computational Complexity Hierarchy 

Easy 

Hard 

PH 

EXP 

#P-complete/hard: 
   #SAT, sampling, 
   probabilistic inference, … 
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Some Example Applications Of SAT 
·  constraint satisfaction 
- scheduling and planning 
- VLSI design and testing (Larrabee 1992) 

·  direct connection to deductive reasoning 
 

·  part of many reasoning tasks 
-  diagnosis / abduction 
-  default reasoning 

·  Learning / Protein folding / Finding proofs 

S    a   iff  S   {   a} is not satisfiable É
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How well can SAT be solved in practice? 
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Average-Case Analysis 

· Goldberg (1979) reported very good performance of 
Davis-Putnam (DP) procedure on random instances. 

But distribution favored easy instances. (Franco and Paull 1983) 

·  Problem: Many randomly generated SAT problems 
are surprisingly easy. 

· Goldberg used variable-clause-length model: 
For each clause, pick each literal with probability p. 
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But the problem is NP-complete ... 
where are the hard instances? 
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Generating Hard Random Formulas 

·  Key: Use fixed-clause-length model. 
(Mitchell, Selman, and Levesque 1992) 

· Critical parameter: ratio of the number of clauses 
                              to the number of variables. 

· Hardest 3SAT problems at ratio = 4.3 
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Intuition 

·  At low ratios: 
- few clauses (constraints) 
- many assignments 
- easily found 

·  At high ratios: 
- many clauses 
- inconsistencies easily detected 
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The region of 
interest 
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Theoretical Status Of Threshold 

·  Very challenging problem ... 
· Current status: 

  3SAT threshold lies between 3.003 and 4.8 

  (Chayet et al. 1999; Friedgut 1997;  

   Motwani et al. 1994; Broder and Suen 1993; 

   Broder et al. 1992; Dubois 1990) 
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Phase Transition Phenomenon 

· Can be analyzed using finite-size scaling 
techniques.  

(Kirkpatrick and Selman, Science 1994) 



BS - 08/95  27 

Finite-­‐Size	
  Scaling	
  For	
  3SAT

Phase	
  Transition	
  for	
  3-­‐SAT,	
  N	
  =	
  12	
  to	
  100	
  
Data	
  Rescaled	
  Using	
  αc	
  =	
  4.17,	
  ν	
  =	
  1.5	
  
(Kirkpatrick	
  and	
  Selman,	
  Science,	
  May	
  1994)

ÒSlow	
  DownÓ	
  
Transition	
  
for	
  High	
  N

100

24
40
50

12

UNSAT	
  
Phase

SAT	
  
Phase

20

Fr
ac
tio

n	
  
of
	
  F
or
m
ul
ae
	
  U
ns
at
is
fie

d

0.0
-­‐10 0

0.2

0.6

0.4

0.8

1.0

0
3

0.2

1.0

0.4

0.6

0.8

M/N

10 20

4 5 6 7



BS - 08/95  28 
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Summary Phase Transition Effect 

·    Coincides with hardest instances. 

·    Behavior at threshold can be analyzed with 
  tools from statistical physics: 
- Threshold has universal form with predictable 

corrections for N (number of vars). 

- Inverse transformation gives 50% point for testing. 
   (Also, rescaling cost function; Selman and Kirkpatrick 1995, 

Gent and Walsh 1995) 
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·  Similar phenomenon for graph coloring. 
-  random graphs 
-  3-coloring; threshold around 4.6 (connectivity) 

(Cheeseman et al. 1991) 

· Critically-constrained --- Practical relevance 
- Airline fleet scheduling (Nemhauser 1994) 

- VLSI design (Agrawal 1991) 

- Traveling Salesperson Problem (Gent and Walsh 1995) 

  See also Hogg, Huberman, and Williams 1996; Crawford and Auton 
1993; Frost and Dechter 1994; Larrabee and Tsuji 1993; Schrag and 
Crawford 1996; Smith and Grant 1994; Smith and Dyer 1996; and more! 



BS - 08/95  31 

PART B. Fast Stochastic Methods 

·  After having identified hard instances, can we 
find better algorithms for solving them? 

·  Answer: Yes    (at least for half of them...)    
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Standard Procedures For SAT 

·  Systematic search for a satisfying assignment. 

·  Interesting situation: 
- Davis-Putnam (DP) procedure, proposed in 1960, is 

still the fastest complete method! 

- Backtrack-style procedure with unit propagation. 
SAT Competition 1992;  DIMACS Challenge 1993  /  1994 
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· DP provides very challenging benchmark for 
comparisons with other systematic (complete) 
procedures. 

   Not just on random formulas! 

· Many other methods have been tried, e.g., 
1) Backtracking with sophisticated heuristics 

   (Purdom 1984; Zabih and McAllester 1988; Andre and Dubois 
1993; Bhom 1992; Crawford and Auton 1993; Freeman 1993, 
etc.) 

2) Translations to integer programming 
  (Jeroslow 1986; Hooker 1988; Karmarkar et al. 1992; Gu 1993) 
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3) Exploiting hidden structure 
   (Stamm 1992; Larrabee 1991; Gallo and Urbani 1989; 

 Boros et al. 1993) 

4) Limited resolution at the backtrack nodes 
   (Billionet and Sutter 1992; van Gelder and Tsuji 1993) 

· And others! 

Open Question: Why don’t they beat DP? 

·  Let’s try something completely different ... 
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Randomized Greedy Local Search: GSAT 

 Begin with a random truth assignment.  

 Flip the value assigned to the variable that yields  
     greatest number of satisfied clauses. 

 Repeat until a model is found, or have performed  
     specified maximum number of flips. 

 If model is still not found, repeat entire process,  
     starting from different random assignment. 

    (Selman, Levesque, and Mitchell 1992) 
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How Well Does It Work? 

·  First intuition: Will get stuck in local minimum, 
with a few unsatisfied clauses. 

· No use for almost satisfying assignments. 
   E.g., a plan with a “magic” step is useless. 
   Contrast with optimization problems. 

·  Surprise: It often finds global minimum! 
   I.e., finds satisfying assignments. 
·  Inspired by local search for CSP initially used on  

N-Queens: Heuristic Repair Method. (Minton et al. 1991) 
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GSAT outperforms Davis-Putnam on, e.g.: 

· Hard random formulas 
- DP: up to 400 vars; GSAT: 2000+ var formulas. 

·  Boolean encodings of graph coloring problems. 
- GSAT competitive with direct encodings. 

·  Encodings of Boolean circuit synthesis and 
diagnosis problems. 
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Improvements Of Basic Local Search 

Issue: How to move more quickly to successively  
        lower plateaus? 

Idea:  Introduce uphill moves (“noise”) to escape  
        from long plateaus (or true local minima). 

Noise strategies: 
      a) Simulated  Annealing 

     (Kirkpatrick et al. 1982) 

     b) Biased Random Walk 
    (Selman, Kautz , and Cohen 1993)       



BS - 08/95  40 

Simulated Annealing 

· Noise model based on statistical mechanics. 

·  Pick a random variable 
d = change in number of unsatisfied clauses 

If   d < 0  make flip (“downward”) 

            else flip with probability e  (“upward”). 

Slowly decrease T from high temperature to near zero. 

-d/T
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 Random Walk 

· Random walk SAT algorithm: 
1) Pick random truth assignment. 

2) Repeat until all clauses are satisfied: 
             Flip random variable from unsatisfied clause. 

·  Solves 2SAT in O(n  ) flips. (Papadimitriou 1992) 

· Does not work for hard k-SAT (k >= 3). 

2 
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Biased Random Walk 

1) With probability p, “walk”, i.e., 
          flip variable in some unsatisfied clause. 

2) With probability 1-p, “greedy move”, i.e., 
          flip variable that yields greatest number 
          of satisfied clauses. 
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Experimental Results: Hard Random 3SAT 

Biased Walk better than Sim. Ann. better than 
Basic GSAT better than DP.      
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Other Applications Of  GSAT 
·  VLSI circuit diagnosis 

         SAT formulation by Larrabee (1992) 
 approx. 10,000 var 5,000 clause problems 

·  Planning and scheduling 
          approx. 20,000 var 100,000 clause problems 
           (Crawford and Baker 1994) 
·  Finite algebra 

          search for algebraic structures 
         GSAT+walk outperforms systematic method on large   
             instances. Currently exploring remaining open problems. 
             (Fujita et al. 1993)  
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 For other work on stochastic, incomplete methods, see e.g.: 

   Adorf and Johnston 1990; Beringer et al. 1994; Davenport 
et al. 1994 (GENET); Kask and Dechter 1995; Ginsberg 
and McAllester 1994; Gu 1992; Hampson and Kibler 1993; 
Konolige 1994; Langley 1992; Minton et al. 1991; Morris 
1993; Pinkas and Dechter 1993; Resende and Feo 1993; 
Spears 1995, and others!   
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· GSAT-style procedures are now a promising 
alternative to systematic methods. 

· Drawback: cannot show unsatisfiability. 
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Showing UNSAT / Inconsistencies 
 

  Given the success of stochastic search methods 
on satisfiable instances, a natural question is: 

Can we do something similar for  
unsatisfiable instances? 
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To show a set of clauses S unsatisfiable, we 
need to demonstrate (“prove”) that none of the 
2   truth assignments satisfies S. 

This “truth-table” method is very time consuming. 
  Compare this with having to check a single satisfying 

assignment to verify the satisfiability of a formula. 

Can we do better? --- Surprisingly difficult! 

N 
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Length Of Proofs 

·  Best know improvement on truth tables: resolution 
- Resolve clauses until empty clause is reached. 

- Widely used in automated theorem proving. 

· DP is a form of resolution. 
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Limitations Of Resolution 
· Method can’t “count”! Pigeon-hole formulas:  

      Can’t place N+1 objects in N holes. 
Shortest resolution proof is exponentially long. 
      (Cook / Karp 1972; Haken 1985) 

· Random unsat formulas: exponential size proofs. 

  Explains why we can’t push DP over 400  vars: 
    400 vars requires search tree of about 10 million nodes 

    1000 vars unsat  requires 10^15 nodes! 
  (Chvatal and  Szemeredi 1988; Crawford 1995) 
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Stochastic Search For Proofs 

· GSAT: start with random truth assignment 
 (size linear in N), and try to “fix” it. 

·  Proposal for UNSAT: start with random proof 
structure, and try to fix it. 

· Completely unfeasible if the structure that we’re 
fixing has trillions of nodes (exponential in N). 

· We need short proofs!   (O(N) or something...) 
(Using abstractions / symmetrries?) 
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Recap Of Results 

A) Computationally hard problem instances 

·   Hardest ones are critically-constrained. 

·   Under- and over-constrained ones can be 
 surprisingly easy. 

·   Critically-constrained instances at phase- 
 transition boundaries. 

  Properties of transition can be analyzed with tools from 
statistical physics. 
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B) Stochastic Search Methods 

· GSAT: Randomized local search for SAT testing.  
Viable alternative to systematic, complete methods.  

·  Progress: 
- 1991: 10 vars, 500 clause theories. 
- 1995: 2,000 to 20,000 vars, up to 500,000  clauses  

· Approaches size of practical applications. 
 E.g. in scheduling, planning, diagnosis, circuit design,  
 and constraint-logic programming. 

    See proceedings for many additional pointers. 
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Fast Incomplete Methods 
- Shift in Reasoning and Search from Systematic / 

Complete methods to Stochastic / Incomplete methods. 

- Key issue: Better scaling properties. 

- Analogy in OR: Shift from finding optimal to finding 
approximate solns. 

- Also, little progress on heuristic guidance of complete 
methods. DP still rules... 

Impact And Future Directions 
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Message for KR&R 
- Asymmetry between our ability to show satisfiability vs. 

unsatisfiability, argues for model-finding (show sat) 
over theorem proving (show unsat). 

- Examples: 
- Vivid repr. (Levesque 1985) 

- Planning (Kautz and Selman 1992) 
- Abduction / diagnosis / deduction 
- Model-based repr. versus formula-based repr. 

(Kautz, Kearns, and Selman 1994; Khardon and Roth 1994) 
- Case-based reasoning (Kolodner 1991) 

Impact, Cont. 
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Some Challenges 
·  Fast incomplete strategies for UNSAT (deduction)? 

    Need for short proofs. Human proofs O(N)? Need automatic 
discovery of abstractions, symmetries, useful lemmas... 

· Need for more model-based reformulations: 
    Where solutions are compact structures --- allowing for 

randomized local search strategies. 

· Can we syntactically characterize the class of 
instances solved by incomplete, stochastic methods? 
Running algorithm may be the best and only characterization!  
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feasible 
instances KR&R 

Formalism 

poly 

Possible Limits Of Syntactic 
Characterization 

Would suggest fundamental role for incomplete methods. 


